班主任分享

October 7, 2008
FRM問題-你問我答(七之一)


老師您好:

有四個問題想請教您?

一、p.239EX 7-9 FRM 1999 Q91

The modified duration of a fixed-rate bond, in the case of flat yield curve, can be interpreted as (where B is the bond price and y is the yield to maturity)?? 麻煩請老師幫我解答!!

二、p.277EX 8-5 FRM 2000 Q11

The Chicago Board of Trade has reduced the notional coupon of its Treasury futures contracts from 8% to 6%. which of the following statements are likely to be true as a result of the change?

三、請問您如何計算當blackd1計算出來之後如何計算N(d1)??

四、p.288 EX 8-10 FRM 1999 Q54

為何The cap-floor parity can be stated as 不是等於 Long cap+ short floor =fixed swap ??

 

針對以上四個問題,我用七之一至七之四等四篇來答覆。

問題一:p.239EX 7-9 FRM 1999 Q91

The modified duration of a fixed-rate bond, in the case of flat yield curve, can be interpreted as (where B is the bond price and y is the yield to maturity)?? 麻煩請老師幫我解答!!

答覆:

修正後存續期間是傳統的存續期間(duration)(又稱為麥考利存續期間(Macaulay duration))除以(1+y)的結果。

若以年為複利期間,則所算出來的存續期間之單位為年。若以半年複利期間,則算出來的存續期間之單位為半年,須再除以2轉換成以年為單位的存續期間。

存續期間須除以(1+y),以算出修正後存續期間的理由,是因為我們係以不連續複利的現值之微分,來求出修正後存續期間(若使用連續複利,則修正後存續期間與傳統的存續期間完全一樣),以簡單的零息債券說明如下:

dP/dy=d/dyF/(1+y)^T=(-T)F/(1+y)^(T+1)=-T/(1+y)×P

則又因為負的第一次微分為金額存續期間(dollar duration, DD):

f′(y)=dP/dy=-D^×P

D^*為修正後存續期間,故金額存續期間為

DD=D^×P

故,D^=T/(1+y)

傳統的存續期間衡量為D=T

修正後存續期間的公式為:

dP/dy=-D/(1+y)×P= -D^×P      

因此-D^=1/P×(dP/dy)

D^=-1/P×(dP/dy)

     解答為(a-(1/B)(dB/dy)

GO to TOP

福茂鑑價顧問股份有限公司