老師您好:
有四個問題想請教您?
一、p.239中EX 7-9 FRM 1999 Q91
The modified duration of a fixed-rate bond, in the case of flat yield curve, can be interpreted as (where B is the bond price and y is the yield to maturity)?? 麻煩請老師幫我解答!!
二、p.277中EX 8-5 FRM 2000 Q11
The Chicago Board of Trade has reduced the notional coupon of its Treasury futures contracts from 8% to 6%. which of the following statements are likely to be true as a result of the change?
三、請問您如何計算當black的d1計算出來之後如何計算N(d1)??
四、p.288中 EX 8-10 FRM 1999 Q54
為何The cap-floor parity can be stated as 不是等於 Long cap+ short floor =fixed swap ??
針對以上四個問題,我用七之一至七之四等四篇來答覆。
問題一:p.239中EX 7-9 FRM 1999 Q91
The modified duration of a fixed-rate bond, in the case of flat yield curve, can be interpreted as (where B is the bond price and y is the yield to maturity)?? 麻煩請老師幫我解答!!
答覆:
修正後存續期間是傳統的存續期間(duration)(又稱為麥考利存續期間(Macaulay duration))除以(1+y)的結果。
若以年為複利期間,則所算出來的存續期間之單位為年。若以半年複利期間,則算出來的存續期間之單位為半年,須再除以2轉換成以年為單位的存續期間。
存續期間須除以(1+y),以算出修正後存續期間的理由,是因為我們係以不連續複利的現值之微分,來求出修正後存續期間(若使用連續複利,則修正後存續期間與傳統的存續期間完全一樣),以簡單的零息債券說明如下:
dP/dy=d/dy【F/(1+y)^T】=(-T)【F/(1+y)^(T+1)】=-T/(1+y)×P
則又因為負的第一次微分為金額存續期間(dollar duration, DD):
f′(y)=dP/dy=-D^*×P
D^*為修正後存續期間,故金額存續期間為
DD=D^*×P
故,D^*=T/(1+y)
傳統的存續期間衡量為D=T。
修正後存續期間的公式為:
dP/dy=-D/(1+y)×P= -D^*×P
因此,-D^*=1/P×(dP/dy)
∴D^*=-1/P×(dP/dy)
∴解答為(a)-(1/B)(dB/dy)